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Self-similar solutions are obtained for the system of heat-conduction and filtra- 
tion equations in regions separated by a moving boundary in the axisymmetric case. 

Mathematical models of problems regarding thermal methods of intensifying the extraction 
of useful minerals -- high-viscosity oils, bitumen, sulfur, and gas hydrates -- are; under 
certain assumptions, complex variants of the Stefan problem [1-4]. Analogous heat-- and mass- 
transfer problems described by heat-conduction and filtration equations are also encountered 
in theories of drying [5] and the destruction of solid materials [6-8]. In [iT4 , 6-8], con- 
sideration was given to one-dimensional linear problems in regions separated by a moving 
phase-transition surface (melting of solid phase, evaporation of liquid, breakdown of gas hy- 
drates, etc.). In the present work, a similar problem is considered in the case of plane-- 
radial geometry. In contrast to the above-mentioned works, the liquid-phase filtration is 
nonsteady, and the pressure at the phase-transition surface is not specified, but is deter- 
mined from additional considerations. 

Suppose that in some small region (e.g., in a borehole) of radius r c of a porous medium 
there exists a heat source. Then the temperature of the surrounding medzum mcreases with 
time, and the solid material filling the pores changes its aggregate state, e.g., melts or 
sublimes. Filtration of the new liquid or gaseous phase occurs in the direction toward the 
heat source, and the melting surface R(t) descends into the porous medium. Thus, t~o regions 
are formed in the medium: the region of filtration of the new phase, r c < r < R(t); and the 
initial state, R(t) < r < ~. 

The temperature distribution in the medium in the case of constant thermophysical para- 
meters is described by the following system of equations 
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are the mean thermal conductivities and specific heats of regions I -- rc< r < R(t) -- and II 
-- R(t) < r < ~; Ps is the mean liquid-phase density; m is the saturation of the solid phase. 
Here and below, the subscripts 0, i, and 2 refer to the pore body, the liquid phase, and the 
solid phase, respectively. 

The filtration rate of the new phase is 
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The pressure distribution in region I is described by the nonsteady-filtration equation 
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which is accurate for the liquid phase and approximate in the sense of Leibenzon linearization 
over the pressure P for the gas phase. 

The following obvious boundary conditions may be adopted for Eqs. (I) and (2) 

TI (0, t) = Te ,  T n ( r ,  0) = Tn(oo ,  t) = T o . 

On surface R(t), temperature continuity and conditions of heat and mass balance are 
observed: 

(5) 

TI (R, t) = Tu  (R, t~ - -  Tm, (6 )  
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The phase-transltlon temperature T m is known. Equation (7) takes account of the heat- 
conduction heat flux in the two regions, the convective heat transfer in the first region 
and the latent heat of the phase change La. This condition is preliminarily transformed 
taking Eq. (8) into account. The balance relations in Eqs. (7) and (8) are more rigorous 
than the analogous conditions given in the above-mentloned works, since in Eqs. (7) and (8) 
account is taken of the relative motion of the new phase and the surface R(t). 

On the phase-transltion surface, the following condition is assumed for the pressure 

The c o n d i t i o n  is none other than 
phase transitions of the first kind. 
[4] or else theoretically, e.g., from 
phase transition on the surface R(t), 

P(R, 0 = P m :  [(Tm). (9) 

the phase-equilibrium relation, which always holds in 
The form of this function is determined experimentally 
the Clapeyron--Clausius equation. If there is no sharp 
a change in aggregate state of amorphous media (bitu- 

mens, asphaltenes, etc.) is observed, and the initial pressure in the medium may be taken 
as Pm" This case is possible, as a rule, in problems of useful-mineral exploitation and the 
so-called rock pressure may be taken as the initial pressure. 

The problem in Eqs. (1)-(9) is closed and admits of self-slmilar solution. The differ- 
ence between this problem and those known in the literature is that the hydrodynamlc problem 
is "semiinverse in the boundary conditions," i.e., the pressure and production of the new 
phase at r ffi r c is not specified but is determined from the solution. 

The solution of Eq. (4) is sought in the form [5] 
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is an integral--exponential function. 

Determining the constants At and B, from Eqs. (8)  and  (9) gives 
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From Eq. (ii), 
determined 

= R z (t)/t = const. (12)  

t h e  f l o w  r a t e  o f  new p h a s e  a t  t h e  o u t l e t  f r o m  t h e  p o r o u s  med ium may b e  

k OP(rc ,  0 P~Pt ( 6  r2c ) 
Q = 2ahr  c ~= 4~hm - -  ~exp (13)  

~t a r  pt 4x 4ut 

582 



and also the pressure (at r = re). 

Substituting the value o f  the filtration rate according to Eqs. (II) and (3) into Eq. 
(i), and introducing the self-similar variables z, = r2/4al t, z2 = ra/4all t, Eqs. (i) and 
(2) are rewritten as ordinary differential equations 

dz~ + 1 +  - -  l + O e x p  - -  - - 0 ,  v =  - - ,  
zl dzt al 

a i T~ 
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These equations are solved, taking Eqs. (5) and (6) into account, 
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Eq. 
The law of motion of the mobileboundary may be determined from the second relation in 
(16) 

R (t) = 2 VN wt. 

The problem is completely solved if the constants B, Y~, and 
follows from Eqs. (12) and (16) that 

(17) 

Y2 are determined. It 

al 
= 4 y l a l ,  V e = y i - -  �9 

al l  

Substituting Eqs. (15)-(17) into Eq. (7), and taking the last two formulas into account, 
a transcendental equation for determining y, is obtained: 

' e x p [ O E i ( _ _ ~ L ) _ ~ l ]  e x p ( - - V !  a ~ i )  
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= 4mc, (p~. - -  Pt) - [ "h '/ 
~I T!exp \ v ] "  

For porous media, as a rule, • al, i.e., the pressure perturbation travels more ra- 
pidly than the temperature perturbation [4]. Therefore, the liquid-phase filtration may be 
regarded as quasisteady, and the above equations then simplify. 

583 



TABLE i. Change with Time in the Melting-Surface Coordinate 
and the Pressure Difference in the First Region 

l l | 

t I [ I 0 I 50 I 1 O0 500 1000 '1[ I I I 

R (t). IO~, m 
' 5-t I 1 6 . 1 1  36-I 
II 5.9 18.6 41.6 

I l l  7 . 1  . 22.3 49.9 

- - A P ,  atm 

I i 0 . 0 8  0.16 0 . 2 4 1 0 . 2 7 1 0 . 3 6 1 0 . 3 9  II 0.12 0.23 0.34 0.38 0.50 0.55 
III 0.19 0.37 0.52 0.59 0.75 0.83 

50.9 113.8 I 161.2 
58.8 131.5 I 186.2 
70.6 157.7 223 

Solving the boundary problem in Eqs. (4), (8), and (9) in the quasisteady case (setting 
~P/~t ffi 0) leads to the result 

R 2 P=Pm ml~ P,--Pi  131n-- .  
k Pt r" 

(19) 

The filtration rate is given by the expression 

l / =  --rt l  - -  P~--Oi [~ 2 
pt r 

and then the exponential term drops out of Eq. (14). Therefore, for the same boundary condi- 
tion, the temperature distribution is described by the formula 

TI=~Tm"I-(Tc'--Tm)[I--'F(O'zO] ' F ( O ,  'y~) 

w h e r e  

r(0, [ ) =  t" exp(- -u)u~ 
o 

In the case of quasisteady filtration, Eqs. (16) and (17) remain in force, and a trans- 
cendental equation simpler than Eq. (18) is obtained for determining 7t 

+xp(-,+~ 
~t (Tc--r m) exp (-- Yl) Y~ + Xn (T m -  To) ~ = (ClTm+ L~) mp~tV,,O = 4mc,(p,-- p,) Y,. 20) 

al ) ~1 F(O, ?,) Ei --u 

Consider, as an example, the melting of a bitumen layer in a porous medium. Values 
characteristic for bituminous deposits were assumed in the calculations: Po = 2500 kg/mS; 
Pt = 800 kg/mS; Pl = 950 kg/mS; co = 750 J/kg. deg; ct = c2 = 2000 J/kg" deg; Io m 1.38 W/m" 
deg; It = 0.17 W/m- deg; kao= 0.5 W/m. deg; L2 = 1.67"i03 J/kg;al =0.625 "10-~ ma/sec; axl = 
0.708. 10 -6 m2/sec; Tm = 60 C; k - 5. i0 -z4 m~; g = 0.25 N. see/mS; ~ = 0.67. l0 -4 m~/sec. 

Values of 0.012, 0.016, and 0.022 were calculated for 7x from Eq. (18) for temperature 
differences T c --T m in the first region of 40, 90, and 180~ respectively. 

Knowing 7t, all the basic parameters of the investigated process can be deduced from the 
expressions given above: the temperature and pressure fields in the medium; the liquld-phase 
filtration rate; the melting-surface coordinate; the pressure at the coordinate origin; and 
the liquid-phase flow rate. 

Table 1 gives values of the melting-surface coordinate R(t) and the pressure difference 
in the llquld-phase region -- AP = P(r c, t) - Pm -- as a function of the time, as calculated 
from Eqs. (17) and (ii), respectively (at r = re). In Table I, X = 86,400 sec, and rows I, 
II, and III correspond, respectively, to the values 0.012, 0.016, and 0.022 of 71 given 
above. It follows from Table 1 that, with time, the motion of the surface R(t) rapidly slows 
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down, and the pressure difference in the first region increases, this increase being more 
pronounced at the beginning of the heating process. 

NOTATION 

r, coordinate; t, time; T, temperature; P, pressure; 0, density; %, thermal conductivity; 
c, specific heat; a, thermal diffusivity; k, permeability; m, porosity; ~, viscosity; v, fil- 
tration rate; • , piezoconductivity; R(t), moving melting surface; L~, latent heat of fusion 
of solid phase; Tm, melting point; z, z,, z2, self-similar variables; B, YI, Y~, constants; 
A,, As, constants of integration; ~, u, auxiliary variables; a, mean specific heat; re, bore- 
hole radius; h, layer thickness. 

i. 

2, 

3. 

4. 
5. 

6. 

7. 
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SOME PROBLEMS OF HEAT- AND MASS-TRANSFER THEORY SOLVABLE 

BY MEANS OF LAPLACE TRANSFORMATION 

S. Ts. Koprinski UDC 536.24~ 

The solution of a system of heat- and mass-transfer equations is obtained in Laplace 
transforms; formulas for finding the inverse transforms are given. 

Consider the system of heat- and mass-transfer equations [i] 

au a~u ozv 

Ot a, + k~ , Ox 2 Ox 2 

Ov O2v O~u 
-- = ao - -  + ks - - ,  
Ot ~ Ox 2 Ox 2 

(1) 

where a~ > O; a2 > O; k~ > O; k~. > O; a,a,~ > k i k~ .  

It is required to find the solution of this system for which boundedness conditions are 
satisfied: u(x, 0 = 0(eX'O, %1>0; v(x, t)-~ 0 (e~9, X~>0; (0 ~<x<oo). 
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